

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0107 of 27 January 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

Bonded anchor for use in concrete

EJOT Baubefestigungen GmbH In der Stockwiese 35 57334 Bad Laasphe DEUTSCHLAND

EJOT Herstellwerk 24

28 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-16/0107 issued on 22 March 2016

European Technical Assessment ETA-16/0107

Page 2 of 28 | 27 January 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0107

7 Page 3 of 28 | 27 January 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for conrete" is a bonded anchor consisting of a cartridge with injection mortar Multifix USF or Multifix USF Winter and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 3, C 5, C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C 4, C 6, C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance and displacements for seismic performance categories C1	See Annex C 12 to C 16
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-16/0107

Page 4 of 28 | 27 January 2021

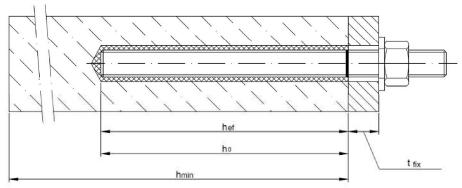
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

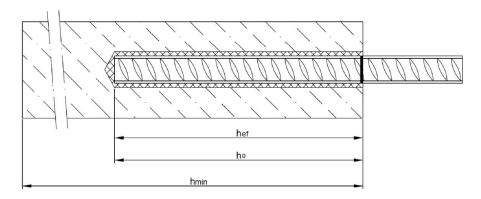
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

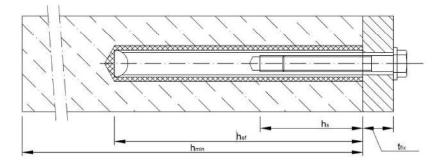
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 27 January 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

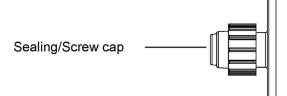
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

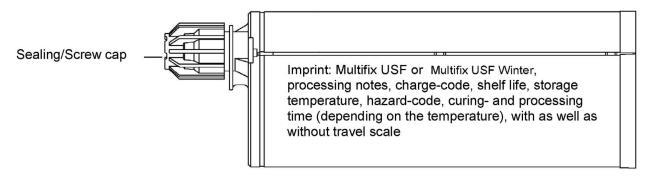
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

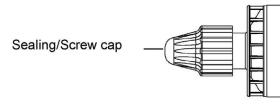
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Product description Installed condition	Annex A 1


Cartridge: Multifix USF or Multifix USF Winter

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: Multifix USF or Multifix USF Winter, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

165 ml and 300 ml cartridge (Type: "foil tube")

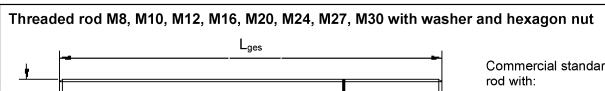
Imprint: Multifix USF or Multifix USF Winter, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

CRW 14W

TAH 18W

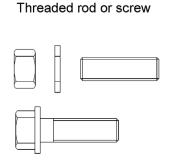
EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

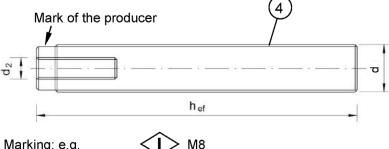

Product description

Injection system

Annex A 2

d



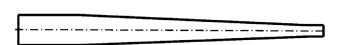

Commercial standard threaded

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

hef

Marking: e.g.

Marking Internal thread


Mark

M8 Thread size (Internal thread) additional mark for stainless steel A4

HCR additional mark for high-corrosion resistance steel

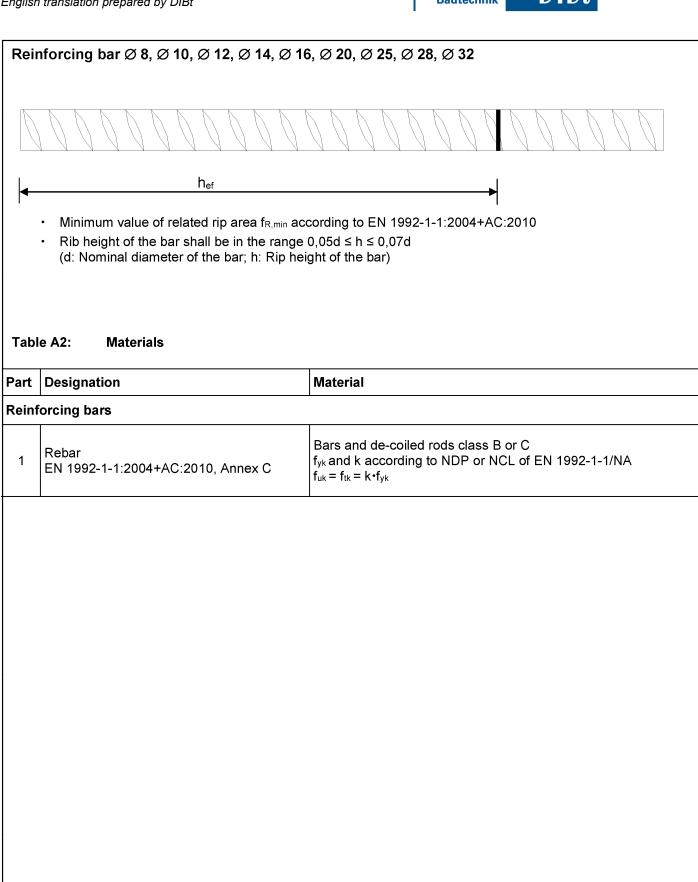
Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

Product description

Threaded rod, internal threaded rod and filling washer

Annex A 3


1	le A1: Materials	Matarial				
	Designation	Material	22.200	4)		
zi ho	ot-dip galvanised ≥ 40 µm a	cc. to EN ISO 4042:1999 of	or and EN	•	-AC:2009 or	
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
•	Timoadod rod	acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm²	f _{vk} = 300 N/mm ²	A ₅ > 8%
		EN 150 696-1.2013		f _{uk} = 500 N/mm²	f _{vk} = 400 N/mm²	A ₅ > 8%
			8.8	f _{uk} = 800 N/mm²	f _{vk} = 640 N/mm ²	A ₅ ≥ 8%
			4	for threaded rod c	L -	-
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for threaded rod c	lass 5.6 or 5.8	
			8	for threaded rod c		
3a	Washer	Steel, zinc plated, hot-dip (e.g.: EN ISO 887:2006,	EN IS	O 7089:2000, EN I	SO 7093:2000 or E	N ISO 7094:200
3b	Filling washer	Steel, zinc plated, hot-dip	o galva			
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture
	Internal threaded					
4	anchor rod	ace to	5.8	$f_{\rm uk} = 500 \text{ N/mm}^2$	$f_{VL} = 400 \text{ N/mm}^2$	$A_{5} > 8\%$
	anchor rod	acc. to EN ISO 898-1:2013	8.8	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8% A ₅ > 8%
tai:	anchor rod nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 corrosion resistance steel	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.456 01 / 1.4404 / 1.4571 / 1.436 (Material 1.4529 or 1.4565	8.8 67 or 1 62 or 1	f _{uk} = 800 N/mm ² .4541, acc. to EN 2 .4578, acc. to EN 2	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014)	A ₅ > 8%
tai:	 	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.456 01 / 1.4404 / 1.4571 / 1.436	8.8 67 or 1 62 or 1 5, acc.	f _{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .4578 Characteristic tensile strength	f _{yk} = 640 N/mm² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength	A ₅ > 8% Elongation at fracture
tai:	 	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.456 01 / 1.4404 / 1.4571 / 1.436 (Material 1.4529 or 1.4565 Property class	8.8 67 or 1 62 or 1 5, acc.	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .7 to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ²	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
tai tai ligh	nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 corrosion resistance steel	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.456 01 / 1.4404 / 1.4571 / 1.436 (Material 1.4529 or 1.4565 Property class	8.8 67 or 1 62 or 1 5, acc.	f _{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .4578 Characteristic tensile strength	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	A ₅ > 8% Elongation at fracture
tai tai ligh	nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 corrosion resistance steel	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.456 01 / 1.4404 / 1.4571 / 1.436 (Material 1.4529 or 1.4565 Property class	8.8 67 or 1 62 or 1 5, acc.	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .7 to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ²	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
Stair Stair Iigh	nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 corrosion resistance steel Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.456 01 / 1.4404 / 1.4571 / 1.436 (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009	8.8 67 or 1 62 or 1 5, acc. 50 70	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .750 EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod c	f_{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f_{yk} = 210 N/mm ² f_{yk} = 450 N/mm ² f_{yk} = 600 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
itai Itai Iigh	nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 corrosion resistance steel	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.456 01 / 1.4404 / 1.4571 / 1.436 (Material 1.4529 or 1.4565 Property class	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .750 EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² for threaded rod cofor thr	f_{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f_{yk} = 210 N/mm ² f_{yk} = 450 N/mm ² f_{yk} = 600 N/mm ² lass 50 lass 70	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stair Stair Iigh	nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 corrosion resistance steel Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.456 01 / 1.4404 / 1.4571 / 1.436 (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 7 404 / 7 1.456	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4571 / 1.4362 or .55, acc. to EN .4088	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014	Elongation at fracture $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014
Stair Stair Iigh	nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 corrosion resistance steel Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.456 01 / 1.4404 / 1.4571 / 1.436 (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.44 A4: Material 1.4401 / 1.44	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 7 404 / 7 1.456 EN IS	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .50 EN	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014 SO 7093:2000 or E	Elongation at fracture $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014
Stain Stain Stain Sigh	nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 corrosion resistance steel Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	EN ISO 898-1:2013 D1 / 1.4307 / 1.4311 / 1.456 D1 / 1.4404 / 1.4571 / 1.436 (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 7 404 / 7 1.456 EN IS	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .50 EN	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014 SO 7093:2000 or E	Elongation at fracture $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014
Stair Stair High	nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 corrosion resistance steel Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.456 01 / 1.4404 / 1.4571 / 1.436 (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006, Stainless steel A4, High 6	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 7 404 / 7 1.456 EN IS	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .50 EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod c for threaded rod c for threaded rod c .4311 / 1.4567 or .4571 / 1.4362 or .50, acc. to EN 100860 7089:2000, EN IS on resistance stee Characteristic	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014 SO 7093:2000 or E Characteristic	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_0 \ge 8\%$ 10088-1:2014 10088-1:2014 N ISO 7094:2000

²⁾ for IG-M20 only property class 50

 $^{^{3)}}$ Property class 80 only for stainless steel A4

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete Annex A 5 **Product description** Materials reinforcing bar

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: -40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod										
Anchor size		M8	M10	M12	M16	M20	M24	M27	M30	
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30	
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35	
Effective embedment denth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600	
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33	
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37	
Maximum torque moment	max T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200	
Minimum thickness of member							$h_{ef} + 2d_0$	ı		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150	
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150	

Table B2: Installation parameters for rebar

Rebar size	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective embedment denth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internal threaded anchor rod

d ₂ [mm] =				IG-M12	IG-M16	IG-M20
2	6	8	10	12	16	20
d _{nom} [mm] =	10	12	16	20	24	30
d ₀ [mm] =	12	14	18	22	28	35
h _{ef,min} [mm] =	60	70	80	90	96	120
h _{ef,max} [mm] =	200	240	320	400	480	600
d _f [mm] =	7	9	12	14	18	22
max T _{inst} [Nm] ≤	10	10	20	40	60	100
I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
h _{min} [mm]	0,		h _{ef} + 2d ₀			
s _{min} [mm]	50	60	80	100	120	150
c _{min} [mm]	50	60	80	100	120	150
	$\begin{aligned} &d_{nom} \text{ [mm] =} \\ &d_{0} \text{ [mm] =} \\ &h_{ef,min} \text{ [mm] =} \\ &h_{ef,max} \text{ [mm] =} \\ &d_{f} \text{ [mm] =} \\ &max T_{inst} \text{ [Nm] } \leq \\ &I_{IG} \text{ [mm] =} \\ &h_{min} \text{ [mm]} \\ &s_{min} \text{ [mm]} \end{aligned}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Intended Use Installation parameters	Annex B 2

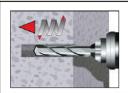
Table B4: Parameter cleaning and setting tools																														
	eterrescations.		8		********	A STATE OF THE PARTY OF THE PAR																								
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d _i Brush		d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio piston plu																					
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1																				
M8			10	RBT10	12	10,5		•																						
M10	8	IG-M6	12	RBT12	14	12,5		No piston p	dua roquira	v d																				
M12	10	IG-M8	14	RBT14	16	14,5		NO PISION P	nug require	:u																				
	12		16	RBT16	18	16,5																								
M16	14	IG-M10	18	RBT18	20	18,5	VS18																							
	16		20	RBT20	22	20,5	VS20																							
M20	20	IG-M12	24	RBT24	26	24,5	VS24	h (h _{ef} >																					
M24		IG-M16	28	RBT28	30	28,5	VS28	h _{ef} > 250 mm	250 mm	all																				
M27	25		32	RBT32	34	32,5	VS32		230 111111																					
M30	28	IG-M20	35	RBT35	37	35,5	VS35]]	_]				_			_]	_					_	
	32		40	RBT40	41,5	40,5	VS40																							

MAC - Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm Drill hole depth (h_0): < 10 d_{nom} Only in non-cracked concrete

CAC - Rec. compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS

Drill bit diameter (d₀): 18 mm to 40 mm

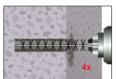

Steel brush RBT Drill bit diameter (do): all diameters

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

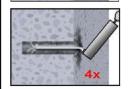
Drilling of the bore hole

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.


In case of aborted drill hole: The drill hole shall be filled with mortar

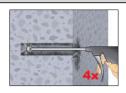
Attention! Standing water in the bore hole must be removed before cleaning.

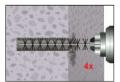
MAC: Cleaning for bore hole diameter d₀ ≤ 20mm and bore hole depth h₀ ≤ 10d_{nom} (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump ¹⁾ (Annex B 3) a minimum of four times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.


If the bore hole ground is not reached with the brush, a brush extension must be used.


2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

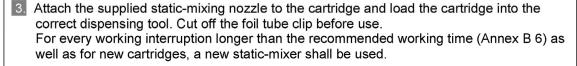
2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

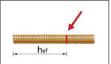
If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

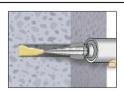
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

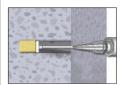
EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete


Intended Use
Installation instructions

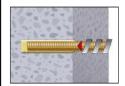

Annex B 4

Installation instructions (continuation)

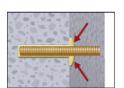



4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

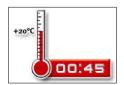
5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.



6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Annex B 6.


7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:

- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250mm
- Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Intended Use Installation instructions (continuation)	Annex B 5

Table B5:		laximum wo Iultifix USF	rking time and minimum curing time	
Concre	te tem	perature	Gelling- / working time	Minimum curing time in dry concrete 1)
-10 °C	to	-6°C	90 min²)	24 h ²⁾
-5 °C	to	-1°C	90 min	14 h
0 °C	to	+4°C	45 min	7 h
+5 °C	to	+9°C	25 min	2 h
+ 10 °C	to	+19°C	15 min	80 min
+ 20 °C	to	+29°C	6 min	45 min
+ 30 °C	to	+34°C	4 min	25 min
+ 35 °C	to	+39°C	2 min	20 min
	+ 40 °(С	1,5 min	15 min

+5°C to +40°C

Cartridge temperature

Table B6: Maximum working time and minimum curing time Multifix USF Winter

Concre	te tem	perature	Minimum curing time in dry concrete ¹⁾			
-20 °C	to	-16°C	75 min	24 h		
-15 °C	to	-11°C	55 min	16 h		
-10 °C	to	-6°C	35 min	10 h		
-5 °C	to	-1°C	20 min	5 h		
0 °C	to	+4°C	10 min	2,5 h		
+5 °C	to	+9°C	6 min	80 Min		
+	10 °C		6 min	60 Min		
Cartride	ge tem	perature	-20°C to +	-10°C		

¹⁾ In wet concrete the curing time must be doubled.

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Intended Use	Annex B 6
Curing time	

¹⁾ In wet concrete the curing time must be doubled.

²⁾ Cartridge temperature must be at min. +15°C.

Т	able C1: Characteristic values for s	teel tens	sion re	esistano	e and s	teel sh	ear res	sistanc	e of th	readed	ı
Si	ze			М8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
ō	naracteristic tension resistance, Steel failure										
St	eel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
CI	haracteristic tension resistance, Partial facto										
St	eel, Property class 4.6 and 5.6	$\gamma_{Ms,N}$	[-]				2,0	כ			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,N}	[-]				1,	5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,N}	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,N}	[-]	1,87							
St	ainless steel A4 and HCR, class 80	Y _{Ms,N}	[-]	1,6							
CI	haracteristic shear resistance, Steel failure	1)									
u	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ^u Rk.s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
eve.	Steel, Property class 8.8	V_{Rks}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
out l	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ^o Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
		M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Wit	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
CI	haracteristic shear resistance, Partial factor	2)									
St	eel, Property class 4.6 and 5.6	γMs,V	[-]	1,67							
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,V}	[-]				1,2	.5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	Y _{Ms,V}	[-]	1,33							

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

2) in absence of national regulation

3) Anchor type not part of the ETA

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2: Characteristic values for Concrete cone failure and Splitting with all kind of action									
Anahayaina				All Anchontones and since					
Anchor size Concrete cone fa	ailure			All Anchor types and sizes					
Non-cracked con-		k _{ucr,N}	[-]	11,0					
Cracked concrete	;	k _{cr,N}	[-]	7,7					
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}					
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}					
Splitting			•						
	h/h _{ef} ≥ 2,0			1,0 h _{ef}					
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$					
	h/h _{ef} ≤ 1,3			2,4 h _{ef}					
Axial distance	•	s _{cr,sp}	[mm]	2 c _{cr,sp}					

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Steel failure	able			eristic values of	tension loa	ids under st								
Characteristic tension resistance N_Rk,s [kN] A_s \cdot f_{uk} (or see Table C1)				od .			M8	M10	M12	M16	M20	M24	M27	M30
Partial factor TMB, N				istance	N _{Rk s}	[kN]			$A_{s} \cdot f_{l}$	ık (or s	ee Tab	le C1)		
Combined pull-out and concrete failure Characteristic bond resistance in non-cracked concrete C20/25 I														
1: 40°C/24°C 11: 80°C/50°C 10 12 12 12 12 12 12 12			-		•	•								
Telephone Tele	narac			ance in non-crac	ked concrete	C20/25								
III: 120°C/72°C 4,0 5,0 5,0 5,0 5,0 5,5 5,5	(I)	1: —	40°C/24°C	Day			10	12	12	12	12	11	10	9
III: 120°C/72°C 4,0 5,0 5,0 5,0 5,0 5,5 5,5	rang							<u> </u>					7,5	6,5
III: 120°C/72°C 4,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,5	ture	: 	120°C/72°C	flooded be re	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
III: 120°C/72°C	pera	<u>l:</u>	40°C/24°C			' '	7,5	8,5	8,5	8,5				
Characteristic bond resistance in cracked concrete C20/25	Tem	II:	80°C/50°C				5,5	6,5	6,5	6,5	^		ormand essed	e
E		III:	120°C/72°C				4,0	5,0	5,0	5,0				
II: 80°C/50°C Dry, wet concrete TRk,cr	narac	teris	tic bond resist	ance in cracked	concrete C20	/25						I	1	
III: 120°C/72°C	a >	l:	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
III: 120°C/72°C	ange	II:	80°C/50°C			[N/mm²] -	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
III: 120°C/72°C	nre r	III:	120°C/72°C				2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
III: 120°C/72°C	perat	l:	40°C/24°C		ੋਪੈRk,cr		4,0	4,0	5,5	5,5				
Reduktion factor ψ^0_{SUS} in cracked and non-cracked concrete C20/25 $\frac{g}{U} = \frac{1}{U} = \frac{40^{\circ}\text{C}/24^{\circ}\text{C}}{\text{II:} = 80^{\circ}\text{C}/50^{\circ}\text{C}} = \frac{1}{U} = \frac{40^{\circ}\text{C}/24^{\circ}\text{C}}{\text{III:} = 120^{\circ}\text{C}/72^{\circ}\text{C}} = \frac{1}{U} = $	Tem	H:	80°C/50°C				2,5	3,0	4,0	4,0	No Performance Assessed			
See Table C2 Splitting See Table C2 See Table C3 See Table C4 See Table C4 See Table C5 See Table C4 See Table C4 See Table C5 See Table C4 See Table C5 See Table C5 See Table C4 See Table C5 See Tab	•						2,0	2,5	3,0	3,0				
See Table C2 Splitting See Table C2 Splitting See Table C2 Splitting See Table C2 Splitting See Table C2 See Table C3 See Table C4	edukt	ion f	actor ψ ⁰ sus in	cracked and no	n-cracked cor	ncrete C20/25	•							
Increasing factors for concrete $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e E	l:	40°C/24°C	Dry wet	et		0,73							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	perat	H:	80°C/50°C	concrete and	te and			0,65						
Increasing factors for concrete $ \begin{matrix} C30/37 & 1,04 \\ C35/45 & 1,07 \\ \hline C40/50 & 1,08 \\ \hline C45/55 & 1,09 \\ \hline C50/60 & 1,10 \\ \hline $		III:	120°C/72°C					0,57						
Increasing factors for concrete $ \psi_{\text{C}} $					C25/30					1,	02			
Ψc														
C45/55		ing 1	factors for con-	crete										
C50/60 Concrete cone failure Relevant parameter See Table C2 Splitting Relevant parameter See Table C2 Installation factor for dry and wet concrete Yinst To No Per	:													
Relevant parameter Splitting Relevant parameter Relevant parameter See Table C2 Installation factor for dry and wet concrete To five flooded here hole Yinst See Table C2 Installation factor Installation factor														
Splitting Relevant parameter see Table C2 Installation factor for dry and wet concrete 1,0 1,2 for flooded here hole														
Relevant parameter see Table C2 Installation factor for dry and wet concrete 7inst 7inst 7inst 1.4 No Per			arameter							see Ta	able C2			
for dry and wet concrete 7inst 1,0 1,2 No Per	eleva	nt pa								see Ta	able C2			
for flooded have hale Yinst [-] No Per					1	1	4.0	1			4.0			
for flooded note note					Yinst	[-]	1,0				1	lo Perf	ormano	:e
	flood	ded	bore hole		11130			1	,4				ssed	
!											1			
EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	JOT (Che	mical Anchor	MULTIFIX USF, N	IULTIFIX USF	winter for co	ncrete	!				A	w C 2	
Performances Characteristic values of tension loads under static and quasi-static action				nsion loads under	static and qua	asi-static actio	n					Anne	ex C 3	

Page 19 of European Technical Assessment ETA-16/0107 of 27 January 2021

English translation prepared by DIBt

Table C4: Characteristic values	s of shea	ar loads	under	static	and qu	asi-stat	tic actio	n		
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]	0,6 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm	•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • '	W _{el} ∙ f _{uk}	(or see	Table C	(1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]				see	Table C	1		
Concrete pry-out failure	•									
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]	1,0							
Concrete edge failure										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)							
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16 20 24 27 30							
Installation factor	γinst	[-]	1,0							

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Anchor size internal threaded	anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Steel failure ¹⁾		T.,			ı		Γ	Γ	1		
Characteristic tension resistance	e, <u>5.8</u>	$N_{Rk,s}$	[kN]	10	17	29	42	76	123		
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor, strength class 5.8	and 8.8	$\gamma_{Ms,N}$	[-]			1	,5				
Characteristic tension resistance Steel A4 and HCR, Strength cla		N _{Rk,s}	[kN]	14	26	41	59	110	124		
Partial factor		$\gamma_{Ms,N}$	[-]			1,87			2,86		
Combined pull-out and concr											
Characteristic bond resistance i	n non-cracked	concret	e C20/25								
υ <u>l: 40°C/24°C</u>	Dry, wet			12	12	12	12	11	9		
3 II. 00 U/30 U I	concrete			9	9	9	9	8,5	6,5		
III: 120°C/72°C		τ	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0		
<u>ខ្ពុំ គ្គ l: 40°C/24°C</u>	flooded bore	^τ Rk,ucr	[[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8,5	8,5	8,5					
စ် <u>II: 80°C/50°C</u>	hole			6,5	6,5	6,5	No Perf	ormance A	ssessed		
III: 120°C/72°C	noie			5,0	5,0	5,0					
Characteristic bond resistance i	n cracked con	crete C2	20/25								
l: 40°C/24°C	Dry, wet		[N/mm²]	5,0	5,5	5,5	5,5	5,5	6,5		
្រ្គី II: 80°C/50°C	concrete			3,5	4,0	4,0	4,0	4,0	4,5		
II: 80°C/50°C	Concrete			2,5	3,0	3,0	3,0	3,0	3,5		
원 년 1: 40°C/24°C	flooded bore hole	^τ Rk,cr	[[IN/mm-]	4,0	5,5	5,5			•		
_ II: 80°C/50°C				3,0	4,0	4,0	No Perf	ormance A	ssessed		
III: 120°C/72°C	noie	ие		2,5	3,0	3,0					
Reduktion factor $\psi^0{}_{ extsf{sus}}$ in crack	ed and non-cr	acked c	oncrete C	20/25							
ຍັງ I: 40°C/24°C	Dry, wet			0,73							
	concrete and flooded bore	Ψ ⁰ sus	[-]	0,65							
ည် III: 120°C/72°C	hole			0,57							
			5/30	1,02							
			0/37	1,04							
Increasing factors for concrete			5/45	1,07							
$\Psi_{ extsf{c}}$			0/50				08				
			5/55				09				
0		C5	0/60			1,	10				
Concrete cone failure			1			000 T	hlo C2				
Relevant parameter Splitting failure						see 18	able C2				
Relevant parameter			T			500 T	able C2				
Relevant parameter Installation factor						SEE 18	ADIC UZ				
for dry and wet concrete						1	2				
for flooded bore hole	γ _{inst}	[-]	1,2 1,4 No Performance Assesse								

The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

2) For IG-M20 strength class 50 is valid

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Performances	Annex C 5
Characteristic values of tension loads under static and quasi-static action	

Anchor size for internal thread		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Steel failure without lever arm ¹)								
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	7	13	20	30	55	40
Partial factor		$\gamma_{Ms,V}$	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	and 8.8	γMs,∨	[-]				1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor		$\gamma_{Ms,V}$	[-]			1,56			2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure			•						
Effective length of fastener		I _f	[mm]	min(h · 12 · d)					min (h _{ef} ; 300mr
Outside diameter of fastener		d _{nom}	[mm]	m] 10 12 16 20 24 30					30
Installation factor		γinst	[-]	1,0					

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element. ²⁾ For IG-M20 strength class 50 is valid

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

8.06.01-702/20 Z99836.20

Anchor size reinforcing I	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resis	stance	N _{Rk,s}	[kN]				1	۹ _s • f _{uk} ُ	1)			
Cross section area		A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γ _{Ms,N}	[-]					1,42)				
Combined pull-out and c	oncrete failu	<u> </u>										
Characteristic bond resista	ance in non-c	racked conc	rete C20/2	:5								
<u>Θ</u> <u>I: 40°C/24°C</u>	Dry, wet			10	12	12	12	12	12	11	10	8,5
## HI: 80°C/50°C HI: 120°C/72°C	concrete			7,5 5,5	9 6,5	9 6,5	9 6,5	9 6,5	9 6,5	8,0 6,0	7,0 5,0	6,0
# 120°C/72°C 1: 40°C/24°C		^τ Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5	8,5	,			4,5
1: 40 C/24 C	flooded			5,5	6,5	6,5	6,5	6,5	N		ormand	e
III: 120°C/72°C	bore hole			4,0	5,0	5,0	5,0	5,0		Asse	ssea	
Characteristic bond resista	ance in crack	ed concrete	C20/25									
<u>Θ</u> <u>I: 40°C/24°C</u>	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
ह्य के <u>III: 80°C/50°C</u>	concrete			2,5	3,5 2,5	4,0 3,0	4,0 3,0	4,0 3,0	4,0 3,0	4,0 3,0	4,5 3,5	4,5 3,5
E E III: 120°C/72°C		^τ Rk,cr	[N/mm²]	2,0 4,0	4,0	5,5	5,5	5,5	,	,	,	· · · ·
b a diameter of the first of th	flooded			2,5	3,0	4,0	4,0	4,0	N		ormano	e
⊢	bore hole			2,0	2,5	3,0	3,0	3,0		Asse	essea	
Reduktion factor $\psi^0{}_{ extsf{sus}}$ in	cracked and	non-cracked	d concrete	C20/2	5							
	Dry, wet							0,73				
II: 40°C/24°C	concrete and	Ψ ⁰ sus	[-]					0,65				
E UII: 120°C/72°C	flooded bore hole			0,57								
		C25/	/30					1,02				
	C30/						1,04					
ncreasing factors for conc	rete	C35/	/45					1,07				
$\Psi_{\mathbf{c}}$		C40/50						1,08				
		C45/	1,09									
Concrete cone failure		C50/	/60					1,10				
Relevant parameter							see	Table	C2			
Splitting								rabio				
Relevant parameter							see	Table	C2			
Installation factor												
for dry and wet concrete				1,2				1	,2			
for flooded bore hole		γ _{inst}	[-]			1,4			N	o Perfo Asse	ormand ssed	e
1) fuk shall be taken from the 2) in absence of national re-	gulation											
EJOT Chemical Anchor M	/IULTIFIX US	F, MULTIFIX	USF winte	er for c	oncrete	•			Annex C 7			
FECUDIONALICES									1			

Page 23 of European Technical Assessment ETA-16/0107 of 27 January 2021

English translation prepared by DIBt

Table C8: Characteristic values of shear loads under static and quasi-static action											
Anchor size reinforcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm			•		•	•		•			
Characteristic shear resistance	V ⁰ Rk,s	[kN]				0,5	0 · A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]			•		1,5 ²⁾	•			
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm	·										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]		•	•		1,5 ²⁾	•			
Concrete pry-out failure		1	•								
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure		-	•								
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)					mm)			
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 25 28 32					32			
Installation factor	γinst	[-]					1,0	•			

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size thread	led rod		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concre	ete C20/25 u	nder static and quasi-	static ac	tion						
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete C	20/25 under	static and quasi-stati	c action							
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	105			0,1	05		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	m/(N/mm²)] 0,255		0,245					
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
III: 120°C/72°C			0,2	0,255 0,245			245			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau; \qquad \quad \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{v0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	δ _{∨∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete 0	Cracked concrete C20/25 under static and quasi-static action									
All temperature	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	δ _{∨∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Performances Displacements (threaded rods)	Annex C 9

Table C11: Displacements under tension load ¹⁾ (Internal threaded anchor rod)									
Anchor size Intern	al threaded ar	nchor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Non-cracked concrete C20/25 under static and quasi-static action									
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049	
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119	
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119	
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172	
Cracked concrete C	20/25 under st	atic and quasi-st	atic action						
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,090			0,070			
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,105			0,105			
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219			0,170			
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255	0,245					
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219			0,170			
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255	0,245					

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C12: Displacements under shear load¹⁾ (Internal threaded anchor rod)

Anchor size Inte	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Non-cracked and cracked concrete C20/25 under static and quasi-static action									
All temperature	δ _{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04	
ranges	δ _{V∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} \text{-factor } \cdot V;$

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Performances Displacements (Internal threaded anchor rod)	Annex C 10

Table C13: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø 32												
Non-cracked concrete C20/25 under static and quasi-static action												
Temperature	$\delta_{\text{No}}\text{-factor}$	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range II: 80°C/50°C	$\delta_{\text{N}\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1							
Temperature	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,0	90	0,070							
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05	0,105							
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170							
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255	0,245							
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,2	219	0,170							
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255	0,245							

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Displacement under shear load¹⁾ (rebar) Table C14:

. , ,												
Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Non-cracked concrete C20/25 under static and quasi-static action												
All temperature	δ _{√0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	
ranges	δ _{V∞} - factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04	
Cracked concrete	e C20/25 und	der static and qu	ıasi-stat	ic actior	1							
All temperature ranges	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06	
	δ _{∨∞} - factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Performances Displacements (rebar)	Annex C 11

Table C15: Characteristic values of tension loads under seismic action (performance category C1)													
Ancho	Anchor size threaded rod							M12	M16	M20	M24	M27	M30
Steel failure													
Charac	terist	tic tension resi	stance	N _{Rk,s,eq,C1}	[kN]				1,0 •	$N_{Rk,s}$			
Partial	facto	or		γ _{Ms,N}	[-]				see Ta	ble C1			
Combi	ined	pull-out and o	concrete failure										
Charac	cteris	tic bond resista	ance in non-crack	ed and cracke	d concrete	C20/25	5						
	I:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
ange	II:	80°C/50°C	Dry, wet concrete		[NI/mm2]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
Temperature range	III:	120°C/72°C		τ		1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
perat	I:	40°C/24°C		^τ Rk,eq,C1	[N/mm²]	2,5	2,5	3,7	3,7				
Tem	II:	80°C/50°C	flooded bore hole			1,6	1,9	2,7	2,7	No Performance Assessed			
	III:	120°C/72°C				1,3	1,6	2,0	2,0				
Increasing factors for concrete $\psi_{\mathbf{C}}$ C25/30 to C50/60								1	,0				
Install	ation	factor		•									
for dry and wet concrete						1,0 1,2							
for flooded bore hole			γ inst	[-]	1,4				No Performance Assessed				

Table C16: Characteristic values of shear loads under seismic action (performance category C1)

				Ι		1					
Anchor size threaded rod		M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure without lever arm											
Characteristic shear resistance (Seismic C1)	[kN]	0,70 • V ⁰ _{Rk,s}									
Partial factor	γ _{Ms,V}	[-]	see Table C1								
Factor for annular gap α_{gap} [-] $0.5 (1.0)^{1)}$											

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	1 0 10
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1)	Annex C 12

Table C17: Characteristic value (performance categ		loads u	nder s	eismic	actio	n					
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure											
Characteristic tension resistance	N _{Rk,s,eq,C1}	[kN]				1,0	• A _s • 1	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,N}	[-]			•	•	1,4 ²⁾		•		
Combined pull-out and concrete fail	•										
Characteristic bond resistance in non-	cracked and cr	acked co	ncrete	C20/2	5						
n I: 40°C/24°C			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
1			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
ill: 120°C/72°C concrete	π	[N/m	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
III: 120°C/72°C concrete 1: 40°C/24°C flooded	^τ Rk, eq,C1	m²]	2,5	2,5	3,7	3,7	3,7				
flooded	-		1,6	1,9	2,7	2,7	2,7	No Performance Assessed			е
III: 120°C/72°C bore hole			1,3	1,6	2,0	2,0	2,0		ASSE	esseu	
Increasing factors for concrete ψ_{C}	C25/30 to 0	C50/60					1,0				
Installation factor	•										
for dry and wet concrete		1,2									
for flooded bore hole	Yinst [-]		1,4				No Performance Assessed				

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Table C18: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm				•	•		•	•				
Characteristic shear resistance V _{Rk,s,eq,C1} [kN]				0,35 • A _s • f _{uk} ²⁾								
Cross section area A _s [mm _{2]}			50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,V}	[-]	1,52)									
Factor for annular gap $\alpha_{ m gap}$ [-]				0,5 (1,0) ³⁾								

¹⁾ fuk shall be taken from the specifications of reinforcing bars

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1)	Annex C 13

²⁾ in absence of national regulation

³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required